btcq.net
当前位置:首页 >> 三角函数公式推导 >>

三角函数公式推导

利用欧拉公式 e^(ix) = cosx+i*sinx 令 x=a+b,得 cos(a+b)+i*sin(a+b) = e^[i(a+b)] = e^(ia)*e^(ib) = (cosa+i*sina)(cosb+i*sinb) = cosacosb-sinasinb+i*(sinacosb+sinbcosa) 所以 cos(a+b) = cosacosb-sinasinb, sin(a+b) = sinacosb=sinb...

设tan(A/2)=t sinA=2t/(1+t^2) tanA=2t/(1-t^2) cosA=(1-t^2)/(1+t^2) 推导第一个: (其它类似) sinA=2sin(A/2)cos(A/2) =[2sin(A/2)cos(A/2)]/[sin^2(A/2)+cos^2(A/2)] 分子分母同时除以cos^2(A/2) =[2sin(A/2)cos(A/2)/cos^2(A/2)]/[(sin^2(A/...

先建立直角坐标系,在直角坐标系xOy中作单位圆O,并作出角a,b,与-b,使角a的开边为Ox,交圆O于点P1,终边交圆O于点P2,角b的始边为OP2,终边交圆O于点P3,角-b的始边为OP1,终边交圆O于点P4。这时P1,P2,P3,P4的坐标分别为:  P1(1,0...

三角函数公式最基本的只有两个: sin(α+/-β)=sinα cosβ +/- cosα sinβ cos(α+/-β)=cosα cosβ -/+ sinα sinβ 这两个公式当然可以证明,而且数学课本上应该有证明. 其他的所有公式,包括和差倍半、诱导公式、和差化积、积化和差,全部都是这两个公式的...

1、定义法:题目中提到f(x)=f(x+C),其中C为已知量,则C为这个函数的一个最小周期。 2、公式法:将三角函数的函数关系式化为:y=Asin(wx+B)+C或y=Acos(wx+B)+C, 其中A,w,B,C为常数。则周期T=2π/w,其中w为角速度,B为相角,A为幅值。若函数...

利用单位圆方法证明 sin(α+β)= … 与cos(α+β)= …,是进一步证明大部分三角函数公式的基础. 1、sin(α+β)=sinαcosβ+ cosαsinβ

下图继续写!

和差化积公式推导 是由积化和差的四个公式推导出来的。 : sina*cosb=(sin(a+b)+sin(a-b))/2 cosa*sinb=(sin(a+b)-sin(a-b))/2 cosa*cosb=(cos(a+b)+cos(a-b))/2 sina*sinb=-(cos(a+b)-cos(a-b))/2 , 有了积化和差的四个公式以后 ,我们只需一个...

网站首页 | 网站地图
All rights reserved Powered by www.btcq.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com